JLH's Test

Once one gets to this standard of amplifier there is only one way to do a proper test, using switches and from a sitting position. Those who claim that expensive components and even connecting wire can make a difference never ever do a proper test, most haven't the faintest idea how to do one.

My own tests are done properly with switches from a listening position. 

The following are the words of Mr John Linsley Hood;

The possession of a good standard of reference is a great help in comparative trials of this nature, and the author has been fortunate in the possession, for many years, of a carefully and expensively built "Williamson" amplifier, the performance of which has proved, in listening trials, to equal or exceed, by greater or lesser margins, that of any other audio amplifier with which the author has been able to make comparisons.

However, in the past, when these tests were made for personal curiosity, and some few minutes could elapse in the transfer of input and output leads from one amplifier to the other, the comparative performance of some designs has been so close that the conclusion drawn was that there was really very little to choose between them. Some of the recent transistor power amplifier circuits gave a performance which seemed fully equal to that of the "Williamson", at least so far as one could remember during the interval between one trial and the next. 

It was, however, appreciated that this did not really offer the best conditions for a proper appraisal of the more subtle differences in the performance of already good designs, so a changeover switch was arranged to transfer inputs and outputs between any chosen pair of amplifiers, and a total of six amplifier units was assembled, including the "Williamson", and another popular valve unit, three class B transistor designs, including one of commercial origin, and the class A circuit described above. The frequency response, and total harmonic distortion characteristics, of the four transistor amplifiers was tested in the laboratory prior to this trial, and all were found to have a flat frequency response through the usable audio spectrum, coupled with low harmonic distortion content (the  worst-case figure was 0.15%).

In view of these prior tests, it was not expected that there would be any significant difference in the audible performance of any of the transistor designs, or between them and the valve amplifiers. It was therefore surprising to discover, in the event, that there were discernible differences between the valve and the three class B transistor units. In fact, the two valve designs and the class A transistor circuit, and the three class B designs formed two tonally distinct groups, with closely similar characteristics within each group. The "Williamson" and the present class A design were both better than the other valve amplifier, and so close in performance that it was almost impossible to tell which of the two was in use without looking at the switch position. In the upper reaches of the treble spectrum the transistor amplifier has perhaps a slight advantage. The performance differences between the class A and the class B groups were, however, much more prominent. Not only did the class A systems have a complete freedom from the slight "edginess" found on some high string notes with all the class B units, but they appeared also to give a fuller, "rounder", quality, the attractiveness of which to the author much outweighs the incidental inconvenience of the need for more substantial power supply equipment and more massive heat sinks.

Some thought, in discussions with interested friends, has been given to the implications of this unlooked-for discovery, and a tentative theory has been evolved which is offered for what it is worth. It is postulated that these tonal differences arise because the normal moving-coil loudspeaker, in its associated housing, can present a very complex reactive load at frequencies associated with structural resonances, and that this might provoke transient overshoot when used with a class B amplifier, when a point of inflection in the applied waveform chanced to coincide with the point of transistor crossover, at which point, because of the abrupt change in the input parameters of the output transistors the loop stability margins and output damping will be less good. In these circumstances, the desired function of the power-amplifier output circuit in damping out the cone-response irregularities of the speaker may be performed worse at the very places in the loudspeaker frequency response curve where the damping is most needed.

It should be emphasized that the differences observed in these experiments are small, and unlikely to be noticed except in direct side-by-side comparison. The perfectionist may, however, prefer class A to class B in transistor circuitry if he can get adequate output power for his needs that way.